EAGLE

and the

High Level Architecture

Sponsor:

OSD PA&E

U.S. Army TRADOC Analysis Center

U.S. Army National Simulation Center

Jack Ogren

July 1996

- O Eagle Design Summary
- O Summary of Effort & Design
- O Technical Approach
- **O Class Structures**
- **O Interactions**
- O Event Synchronization
- **O RTI Functionality Exercised**
- O Testing Results
- **O Summary**

Kagle Design Summary

- O Summary of Effort & Design
- O Technical Approach
- **O Class Structures**
- **O Interactions**
- O Event Synchronization
- **O RTI Functionality Exercised**
- O Testing Results
- **O Summary**

agle Design -- Summary

- Used by TRAC as a combat development analysis tool to study corps and division level force effectiveness issues. (Not a Training Simulation)
- O Characteristics
 - Corps & below level simulation
 - Resolution to Battalion or Company (Entity level w/BDSD)
 - Deterministic (Stochastic w/BDSD)
 - Hybrid event Structure
 - = Attrition/Ground Movement/Detection/C2 are Time-stepped
 - = Air/ADA interactions are Event-driven
 - Integrates Artificial Intelligence methods and conventional combat modeling algorithms

Object-Oriented

Embedded AI Systems (expert systems)

Symbolic decision making

Lisp/KEE Programming environment

- Command and Control modeled explicitly.

Units execute orders and pass information based on a Battlefield Management language.

agle Design -- Summary

- **O Functional Representation**
 - Command & Control Headquarters (Corps through Battalion)
 - Ground Maneuver Units (Company, Battalion)
 - Fire Support Units (Battalion, Battery, Tube, Radar section)
 - Air Maneuver Units (Battalion, Company, Section)
 - = Attack and Scout Helicopter Units
 - Air Defense Units (Battalions, Battery, Sections)
 - Intelligence (Sections)
 - = Air & Ground Acquisition Elements (RPV, radar, JSTARS, RECCE)
 - Engineers (Battalion, Team)
 - = Mobility, countermobility, Survivability
 - Fixed Wing (Flights)
 - = CAS, BAI, SEAD

agle Architecture

- Eagle Design Summary
 Summary of Effort & Design
- O Technical Approach
- **O Class Structures**
- **O Interactions**
- O Event Synchronization
- **O RTI Functionality Exercised**
- O Testing Results
- **O Summary**

agle & the HLA ummary of Effort to Date

Eagle Early Analysis Experiment

Distributed Units Eagle Combat units interact
using the RTI.

Joint Training Federation (JTFp)

Distributed FunctionalityArmy Combat units - Eagle
Navy Combat units - NSS
Air Force Combat units - NASM
Environment - DEEM
Federation Controller

Design facilitate: Running as Standalone

as Distributed Units

as Distributed Functionality

as Distributed Units & Functionality (not tested)

istributed Eagle Goal & Basic Design

- O GOAL: Decrease computation load on single processor while minimizing interactions and maintaining the same temporal, tactical, organizational and spacial consistency tha currently exists on a single processor.
- O DESIGN: Combat units are distributed among multiple Eagle simulations on the network.
 - = Each simulation maintains its own set of core services terrain, terrain evaluation, attrition, tactics DB ... etc
 - = Each simulation reflects all units not owned by the simulation.
 - The distributed design maintains consistency between:
 Services on simulations (Terrain conditions).
 Combat units and their reflected representations.

unctionally Distributed Eagle Goal & Basic esign

O GOAL: Allow externally generated Objects (combat or environmental) to interact with Eagle generated combat units while maintaining the same or <u>better</u> temporal, tactical, organizational and spacial consistency that currently exists on a single processor.

O DESIGN:

- Eagle provides all ground combat functionality for the federation. All ground combat units are reflected.
- Functionality within Eagle is replaced by functionality provided by the confederation members.
 - Eagle replaces normal fixed wing operations by Subscribing to the federation air objects (classes)
 Publishing & subscribing to interactions between the ground & air players (air to ground / ground to air)

- O Eagle Design Summary
- Summary of Effort & DesignEechnical Approach
- **O Class Structures**
- **O Interactions**
- O Event Synchronization
- RTI Functionality Exercised
- O Testing Results
- **O Summary**

echnical Approach within Eagle Example

echnical Approach between Eagle & the RTI

- O A new Eagle Service (HLA Translator) is provided within the Eagle framework to provide the interface between Eagle objects & the RTI.
- Each Eagle simulation HLA Translator Service (lisp) communicates with the RTI through an Eagle RTI Common module (C++).
- The Eagle RTI Common module provides the interface with the RTI rti_ambassador, sim_ambassador, etc.

echnical Approach - External to Eagle

Translator - Lisp/C

Out the socket --> (hla_talk "TIME_ADVANCE_REQUEST^1.34")

Listen to socket (Blocked ?) --> (hla_listen)

Eagle RTI - Interface C++ Loop - Orbix Events or socket Calls -Do SOCKET CALL

Receive socket Stream: Tokenize, execute Case Statements which -- Calls rti_Ambassador: time_advance_request(the_time, IT_X)

Eagle RTI - Interface C++ Loop - Orbix Events or socket Calls -Do ORBIX EVENT sim_amb_imp method is called: sim_ambassador_imp::time_advance_granted(Fed_time)

Outputs to socket "time_advance_granted 1.34"

Calls to Sim_amb are buffered on Socket when Eagle is not Listening.

- O Eagle Design Summary
- O Summary of Effort & Design
- Technical ApproachHass Structures
- **O Interactions**
- O Event Synchronization
- **O RTI Functionality Exercised**
- O Testing Results
- **O Summary**

Software Object Model and Federation Object Model

agle Class Structure istributed Eagle FOM &&

Cagle SOM JTFp FOM

Class Structure Attributes used to define Reflected Units

istributed Eagle FOM

(Partial - Ground Mover)

JTFp FOM

ATTRIBUTE
Battlefield Operating System
Higher Hdq's name
Depth of unit (meters)
Direction of movement of the unit
Disaggregated boolean
Echelon
Percent Effective
Effectiveness State
Frontage of Unit (meters)
Latitude
Longitude
Name
Operational Activity
Orientation of weapons
Phantom boolean
Purged boolean
Quantity of Sytems on-hand by type
Route segment
Side
Size
Systems requirements code
System configuration
Task

Unit Type Air Defense Controller Air Defense Network boolean Air Defense Status Assignment Command Assignment Command Unit boolean Indirect Fire Systems on-hand Number of Indirect Fire Units Prioritized Enemy List

Signature - counter battery Signature - counter mortar Signature - combat

Signature - communications Previously detected boolean

Signature - Moving Target Radar Signature - photo Net speed from last time step System weight factor

(Par	(Partial - Aggregate Ground Playe			
JECT	ATTRIBUTE			
ayer	entity name			

OBJECT	ATTRIBUTE				
Player	entity name				
	federate id				
	affliliation				
	motion type				
	voice nets				
	jtids nets				
	trap tre				
	comander type				
Aggregate Entity	radar cross section				
	radar detectable				
	elint detectable				
	comint detectable				
	ir detectable				
	photoint detectable				
	air to air engageable				
	surf to air engageable				
	air to surf engageable				
	surf to surf engageable				
	composition				
Dead Reckoned	time at last cse change				
Players	lat at last cse change				
	lng at last cse change				
	alt at last cse change				
	cse at last cse change				
	hspd at last cse change				
	vspd at last cse change				
Aggregate	depth				
Ground Player	front				
	orientation				

Number of Attributes to define a typical ground combat unit in **Eagle:** ~ 400

Number of Attributes to reflect units in Distributed Eagle:

	Define	Update
Ground Movers	43	31
Air Maneuver	35	26
Fixed Wing	33	22

Number of Attributes to reflect Aggregate Ground Units in JTFp: Define Update

Ground Movers 29 17

istributed Eagle Interaction Structure ypical Interactions between combat units and services

O Unit Interactions

- Detection (implicit)
- Direct Fire
- Indirect Fire
- Air to ground
- Ground to air
- Communications

Command & Control
between units is
established by the Plan.
All reporting and directing
go through Commo channels.

O Service Interactions

- Event Queue Management
 - Add/remove events
- Control Measures
 Database consistency
 - Create CM
- Terrain Database consistency
 - false targets
 - register engr work
- Attrition
 - Ammo use
 - Suppression

agle Interactions - C2 ... Indirect Fire xample Interactions in distributed Eagle

Current Interactions Allowed - Distributed Eagle B interaction types - total with subtypes: 65

Interaction	Initiating Class	Receiving Class
Engagement direct fire ground to ground	Attrition Manager	Attrition Manager
Bulk ammunition consumed	Attrition Manager	Ground-Movers, Air Movers
Engagement indirect fire ground to ground	Attrition Manager	Attrition Manager
Suppression update	Attrition Manager	Ground-Movers
Engagement Air to Ground	Attrition Manager	Ground-Movers
Aircraft abort flight notification.	Fixwing	Airspace manager
New air/ada events for Time Step.	Air Space Manager	Air Space Manager
Communications between units	Commo Manager	Commo Manager
Create control measure - db_consistency	Scenario Control Measures Manager	Scenario Control Measures Manager
Dead Target Updates - db_consistency	Attrition Manager	Terrain Manager
Register Eng. Work - db_consistency	Terrain Manager	Terrain Manager
Update Terrain Feature - db_consistency	Terrain Manager	Terrain Manager
Remove Terrain Feature - db_consistency	Terrain Manager	Terrain Manager
Ground receive losses air attack.	Attrition manager	Ground Movers
Activate IDF msn	Military Unit (Command)	Attrition Manager
Update tf occupcany - db_consistency	Terrain Manager	Terrain Manager
Update-active-aois	Ground-Mover	Air-Maneuver
Create-breach - db_consistency	Terrain Manager	Terrain Manager
Create-bypass - db_consistency	Terrain Manager	Terrain Manager
Set Unit visibility terrain- db_consistency	Military-units	Terrain Manager
Set Unit visibility map- db_consistency	Military-units	Terrain Manager
Set unit visible - db_consistency	Military-units	Military-units
Db-consistency, used to coordinate events	Aggregate actors	Aggregate actors
Eagle Management - stop, start	Eagle Controller, Confederation Manager	Eagle Controller, Confederation Manager
SIU - Dis interactions between actors	Model Network Manager	Model Network Manager
Resolution Unit Interface - C4I interactions	C4I Interface, Military Unit	C4I Interface, Military Unit
CommandUnit Interface - C4I interactions	C4I Interface, Military Unit	C4I Interface, Military Unit

TFp Interactions that involve Eagle

O Unit Interactions

- Detection (implicit)
- Indirect Fire
- Air to surface
- Surface to air

- Federation Management Interactions
 - Initialization
- O Environmental
 - LOS

- Communications

Interaction	Initiating	Receiving
TBM Warming	Player	Eagle Commo Manager - Player
TBMLaunchAlert	Player	Eagle Commo Manager- Player
Situation Report	Player - Eagle Commo Manager	Player (JTF HQ)
RequestAirSupport	Player - Eagle Commo Manager	Player (JTF HQ)
AirToAggregate GroundEngage	Player	Eagle Attrition Manager
DiscreteGroundToAirEngage	Player	Eagle Attrition Manager
AggregateGround ToAirEngage	Eagle Attrition Manager	Player
Get & Return LOS	Eagle Terrain Manager	Surface Cover
Initialize Federation	Federation Status	Eagle Federation Status
Execute Federation	Federation Status	Eagle Federation Status

JTFp has defined 24 Interactions Eagle participates in 10

- O Eagle Design Summary
- O Summary of Effort & Design
- O Technical Approach
- **O Class Structures**
- O Interactions

€vent Synchronization

O RTI Functionality Exercised

- O Testing Results
- **O Summary**

he Challenge

To maintain a consistent view of time within Eagle regardless of the types of simulations that are participating in a federation.

Simulations that use RTI Time Mgt

I. Use time steps to advance time timesteps > Eagles (DEEM) timesteps < Eagles timesteps = Eagles (Eagle)

I. Use events to advance time (NSS,NASM)

Running as fast as possible or scaled real time

Real time

Eagle has a hybrid event structure that relies on both the notion of continuous time using time steps (1 to 5 mins) and the projecting of discrete events limited to the duration of the time step.

dditional Challenges

1. Eagle can <u>not</u> have unique time management scheme for each Fed.

Tools provided by RTI that Eagle uses to maintain time & consistency:

2. Eagle must maintain causality with DIS.

Processing time must be considered in updates.

TIME_ADVANCE_REQUEST

TIME ADVANCE GRANT

3. Eagle must be able to receive information from DIS in Eagle's Federate time past. (No real time functionality in RTI - yet)

NEXT_EVENT_REQUES

SET_LOOKAHEAI

4. Eagle must maintain consistency between its internal time step events which all occur at the same time.

SEND_INTERACTION

RECEIVE_INTERACTION

SET_TIMESTAMP_RECEPTION

SET TIMESTAMP GENERATION

5. Eagle must constraint time advance to RTI.

ISTRIBUTED EAGLE

ISTRIBUTED EAGLE W/EVENTS

- O Eagle Design Summary
- O Summary of Effort & Design
- O Technical Approach
- **O Class Structures**
- **O Interactions**
- Event SynchronizationR-TI Functionality Exercised
- O Testing Results
- **O Summary**

TI - Functional Interfaces Used Distributed & Functional Area

Туре	Avail	Used	Туре	Avail	Used
Federation Management	22	3	Ownership Management	19	1
Declararation Management	12	4	Object Management	20	15
Гime Management	17	6			

ederation Management REATE_FEDERATION_EXECUTION DIN_FEDERATION_EXECUTION ESIGN_FEDERATION_EXECUTION

eclararation Management
JBLISH_OBJECT_CLASS
JBSCRIBE_OBJECT_CLASS
JBLISH_INTERACTION_CLASS
JBSCRIBE_INTERACTION_CLASS

me Management
ME_ADVANCE_REQUEST
EXT_EVENT_REQUEST
ET_TIMESTAMP_GENERATION
ET_TIMESTAMP_RECEPTION
ET_LOOKAHEAD
ME_ADVANCE_GRANT

wnership Management NCONDITIONAL ATTRIF

NCONDITIONAL_ATTRIBUTE_OWNERSHIP_DIVESTITURE

Object Management
ID_REQUEST
INSTANTIATE_OBJECT
TRANSLATE_ATTRIBUTE_NAME
TRANSLATE_INTERACTION_CLASS_NAME
TRANSLATE_OBJECT_CLASS_NAME
DELETE_OBJECT
UPDATE_ATTRIBUTE_VALUES
SEND_INTERACTION
SEND_DIRECTED_INTERACTION
INSTANTIATE_DISCOVERED_OBJECT
REMOVE_OBJECT
REFLECT_ATTRIBUTE_VALUES
RECEIVE_INTERACTION
RECEIVE_DIRECTED_INTERACTION

PROVIDE_ATTRIBUTE_VALUES

The Above are used & understood by Eagle

unctional Interfaces Ownership Management agle creates and NASM Flies

TEL receives msg to Launch Ballistic Missile - Changes to Operational Activity Pre Launch Create Ballistic Missile - Eagle Class RED-AF-MSL with name "bal_msl_1"
Initialize with Operational Activity SpinUptoLaunch, determine Launch Time If Func-area-distributed

Id_request, Instantiate_Object, Update_attribute_values
If Not Func-area-distributed place launch event on ASM event queue

If Func-area-distributed

- A. Place Divest-Msl-flight event on ASM event queue
- B. Unconditional_attribute_ownership_divestiture

To NASM - location & Time of arrival attributes

2. Air Space Manger processes Divest-Msl-flight event

Attach Bal_msl_1 to Class MSLFlt. This will cause methods to be inherited by BAL_MSL_1 that will over write normal move & update methods, allowing all movement of the MSL to be caused by updates from the Federation.

- O Eagle Design Summary
- O Summary of Effort & Design
- O Technical Approach
- O Class Structures
- O Interactions
- O Event Synchronization
- RTI Functionality Exercised**Testing Results
- **O Summary**

lesults - Distributed Eagle onsistency & Time

- O Not much news so far TIME
- O Consistency Simple Test 2 machines

	_	Machine 1	Machine 2
irection	Type	Num	Num
OUT	FED	1	2
	DEC	33	33
	OBJ	355	343
	OBJ OUT	8007 \	, 7816
	OWN	0 \	/ 0
	TIME	723	/ 723
	TOTAL	9119	8917
		/	
IN	FED	0 /	\ 0
	DEC	5	5
	OBJ	7816	8 007
	OWN	0	0
	TIME	144	144
	TOTAL	7965	8156

1. No Messages lost.

2. Duplicates
Ver .30 avg: 100
Ver .33 none

3. Consistency with standalone ??

Time - 2 machine run 100 units/machine

ALSP: 21 to 1

HLA: 24 to 1

Data point

of 1 ..so

BUT IT WORKS

- O Eagle Design Summary
- O Summary of Effort & Design
- O Technical Approach
- **O Class Structures**
- **O Interactions**
- O Event Synchronization
- **O RTI Functionality Exercised**
- Testing ResultsSummary

ummary

- **O Continue Testing**
 - Increase number of machines
 - Increase number of units
 - Increase run time
 - Increase interactions

Measures of effectiveness TIME CONSISTENCY

O Version .33U seems capable to support continued testing.

HOWEVER

I CAN SAY NOW THAT

The underlying concepts of the HLA support the distribution requirements

of a constructive analytical model.